MMAT 5000: Analysis I (2016 1st term)

1 Basic Definitions

Throughout the note, we use the following notation:
(i
(ii

) R = the set of all real numbers.

) C
(iii) Q = the set of all rational numbers.

) N

= the set of all complex numbers.
(iv = the set of all natural numbers.

Definition 1.1 Let X be a non-empty set. A function d : X x X — R is said to be a metric
on X if it satisfies the following conditions.

(i)
(i)
)

(ii

d(xz,y) >0 for all z,y € X.

d(z,y) =0 if and only if x = y.

(Symmetric property) d(z,y) = d(y, z) for all z,y € X.

(iv) (Triangle inequality) d(z,y) < d(z, z) 4+ d(z,y) for all z,y,z € X.

In this case, the pair (X, d) is called a metric space.

Example 1.2 :

(i) For z,y € R, put d(z,y) = |x — y|. Then d is a metric on R and d is called the usual
metric on R.

(ii) For z = (21,22),y = (y1,42) € R?, define:
doo (2, y) = max(|zy — x2l, [y1 — y2l);
di(2,y) = |v1 — 2| + |31 — yal;
da(z,y) = \/|z1 — 222 + [y1 — y2|2. Then all are metrics on R2.

(iii) Let X be any non-empty set. For z,y € X let d(z,y) = 0 if z = y; otherwise, d(x,y) = 1.
Then d is a metric on X. In this case, d is called the discrete metric on X and (X, d) is
called a discrete metric space.



(iv) Fix a prime number p. For ¢ € Q, define |¢|, =p~if § = p”‘g—,, where v € Z and p { d'l’.
If we put dy(z,y) = |z — y|, for z,y € Q, then d, is a metric on Q. Furthermore, d,
satisfies the strong triangle inequality, i.e.,

dp(,y) < max(dy(z, 2), dp(2,y))

for all z,y, 2 € Q.

Definition 1.3 Let V be a vector space over a field K, where K = R or C. A function
|- ]| : V— R is called a norm on V if it satisfies the following conditions.

(i) |lz|| > 0 for all z € V.
(ii) ||z|| = 0 if and only if z = 0.
(iii) (Triangle inequality) ||z —y| < ||z — 2| + ||z — y|| for all z,y,z € V.

In this case, the pair (V,|| - ||) is called a normed space.

Proposition 1.4 Let (V)| -||) be a normed space. If we put d(z,y) = ||z — y|| for x,y € V,
then d is a metric on V. Consequently, every normed space is a metric space.

Remark 1.5 Let V be a vector space. Notice that the discrete metric d on V' must not be
induced by a norm, i.e., we cannot find a norm || - || on V such that d(z,y) = |z — y|| for
z,yeV.
Example 1.6 The following are important examples of normed spaces.
(i) Let £ = {(zp) : xn € C, n=1,2...; sup |zy,| < 0o} and ¢y = {(zp) € £*° : lim |z, | = 0}.
Put [|(20)loo = 5D [l
(ii) Let ' = {(xp) 1 € C, n=1,2...; 30| |mp] < 00}, Put [|(zn)]l1 = D02y 7).
(iii) Let 2 = {(zn) 1 xp € C, n=1,2...; 3°° |2n|? < 00}. Put [[(zn)]l2 = /Doy [7n]?
Exercise 1.7 :
(1) Let (X,d) be a metric space. Define
d(z,y)
xT,Y) = ——""—
p(z,y) T+ d(z,9)
for x,y € X. Show that p is also a metric on X.

(2) Let (X,dx) and (Y,dy) be the metric spaces. Define

p((z,y), («',y") = dx(z,2") + dy (y,9)

for z,2’ € X and y,y’ in Y. Show that p is a metric on the product space X x Y =
{(z,y): zeXsyeY}

(3) Let (X,d) be a metric space and let A be a subset of X. We say that A is bounded if
there is M > 0 such that d(a,a’) < M for all a,a’ in A.
Show that if Ay, ..., AN(N < o0) all are bounded subsets of X, show that AyU------ UApN
is also a bounded subset of X.



2 Convergent Sequences

Throughout this section, (X, d) will denote a metric space.
For a € X and r > 0, put
B(a,r) ={x € X : d(a,z) < r}, called the open ball with center a of radius 7;

B(a,r) ={x € X : d(a,z) < r}, called the closed ball with center a of radius 7.

Recall that a sequence on X is a function f : {1,2,..} — X. Write f(n) = z,, € X. Also,
if (n) is a sequence of positive integers with n; < ng < ng < ------ , then we call (z,,) a
subsequence of (x,).

Definition 2.1 A sequence (z,) is said to be convergent in X if there is an element a € X
such that d(a,x,) — 0 as n — o0, i.e., it satisfies the following condition.

For any € > 0, there is a positive integer N such that x,, € B(a,¢) for alln > N.

In this case, a is called a limit of the sequence (z,,). Also (x,) is said to be divergent if it is
not convergent

Proposition 2.2 If (z,) is a convergent sequence in X, then its limit is unique. Now we can
write lim xz,, for the limit of (xy,).

Proof: Suppose that a and b both are the limits of (x,) with @ # b in X. Then d(a,b) > 0.
Choose 0 < 2¢ < d(a,b). By the definition of limit, we can find the integers N and N such that
d(a,zy,) < e for all n > N; and d(b,x,) < € for all n > Ny. Now if we take N > max(Ny, Na),
then we have

d(a,zn) < e; and d(b,zy) < €.
Hence we have
d(a,b) < d(a,zn) + d(zn,b) < 2 < d(a,b).

It leads to a contradiction. O

Example 2.3 :

(i) If we let (R,d) be the usual metric space and let z,, = 1/n, then (z,) is a convergent
sequence in R.

(ii) If we let X = (0,1] and d is the metric induced by the usual metric on R, then the
sequence (1/n) is divergent in (0, 1]. In fact, if (1/n) converges to an element a € (0, 1],
then lim1/n = a in R. Then by the uniqueness of limit (see Proposition 2.2), we have
a = 0. It leads to a contradiction.

Definition 2.4 Let A be a subset of X. A point a € X is said to be a limit point of A if for
any r > 0, we have

(B(a,r)\{a}) N A#0

i.e., for any r > 0, there is an element z € A such that 0 < d(a, z) < r (note: z # a because
d(a,z) > 0).



Put D(A) the set of all limit points of A and A = AUD(A). Also the set A is called the closure
of A.

Proposition 2.5 Using the notation above, let z € X. Then the following are equivalent.
(i) z € A.
(it) B(z,r)NA#( for all v > 0.
(i1i) There is a sequence (xy) € A such that lim x,, = z.
Moreover, if A and B are any subsets of X, then we have
(a) O =0.
(b) A =4.
(c) AUB=AUB.

Remark 2.6 (i) In general, AN B # AN B.
For example, if we consider X = R and A = (0,1); B = (1,2), then AN B = ) and

A=1[0,1],B=11,2]. So, we have ) = ANB C AN B = {1}.

(ii) Let Aj, As,.... be an infinite sequence of subsets of X. In general, | J°"; A,, # oo, 4.
For example, let X = R and A4,, = [0,1—2). Then |J]2; 4, = [0,1] but ;" ; 4, = [0,1).

Example 2.7 (i) Let X =R and A=7Z. Then D(Z) =0 and A =7 .
(i) Let X =R and A = (0,1]. Then D(A) = [0,1] and A = [0, 1].
(iii) Let X = (0,00) and A = (0,1]. Then D(A) = (0,1] and A = (0, 1].

(iv) Let X = Rand A = Q. Then D(A) = R and Q = R (A is said to be dense in X if
A=X).

(v) Using the notation as in Example 1.6, we let
coo = {(x,) € £°° : there are only finitely many z,, ‘s # 0}.

Also cqp is endowed with the || - [|co-

Then the set cgp is dense in ¢y. In fact, if v = (v,) € ¢p, then for any € > 0, there is
N € N such that |v,| < € for all n > N. Now we define £ = (&,) by &, = v, when
1<n<N-1and¢§, =0 whenn > N. Then £ € ¢y and ||v — {||cc = SUp,,>n |vn| < €.
So v € ¢p. -

Definition 2.8 A subset A of X is said to be closed in X if A = A(< D(A) C A).

Proposition 2.9 A subset A of X is closed if and only if for an element a € X having a
sequence () in A with limx,, = a, implies a € A.



Example 2.10 (i) Let X = R. Then Z is a closed subset on R and (0, 1] is ”Not” a closed

subset of R. However, if X = (0, 00), then (0, 1] is a closed subset of (0, c0).

So, the notion of ”Closeness” depends on the choice of X.

Using the notation as in Examples 1.2 and 2.3, ¢y is a closed subspace of £*° and cqyg is
not a closed subspace of £°°.

Claim : ¢ is closed in £°°.

By Proposition 2.9, we need to show that if v € £>° with a sequence (&) in ¢y such that
limy, [|€, — v||ec = 0, then v € ¢y.

Now put v = (v;)72; and &, = (§n,;)52,. Let € > 0. Since limy, [|§;, — v[|c = 0, there is
a positive integer N such that ||[v — {n|lec < €. This implies that |v; — &n ;| < € for all
J € N. On the other hand, there is a positive integer J such that [y ;| < e for all j > J
because £y € cg. So, we have

o] < 1€n4l +& <2

for all j > J. Therefore, v € ¢y. The proof is finished.

Proposition 2.11 Using the notation as before, we have the following assertions.

(i) The whole set X and the empty set () both are closed subsets of X.

(ii) If A and B are the closed subsets of X, then so is AU B.

(iii) If (As)ier is a family of closed subsets of X, then so is the intersection (;c; As.

(iv) The closure A of A is the smallest closed set containing A, that is, A is closed and if F

is another closed set with A C F, then A C F.

Remark 2.12 The assumption of the finite union of closed sets in Proposition 2.11 (i7) is
essential. For example, consider X =R and (J;~,[1/n,1] = (0,1].

Exercise 2.13 Let A be a non-empty subset of X. A point a € X is called a boundary point
of Aif B(a,r)N A # () and B(a,r) N A° # ) for all » > 0, where A° denotes the complement
of A in X. The set of all boundary points, write A, of A is called the boundary of A.

(i)
(i)
(i)
)

(iv

Find the boundaries of Z and Q in R.
Let X = (0,1) U (2,3). Find the boundary of the set (0,1) in X.
Show that the boundary 9A is a closed subset of X.

Show that A = AU JA.

Definition 2.14 A subset V of X is said to be open in X if for each z € V, there is r > 0
such that B(z,r) C V.



Remark 2.15 (i) The notion of open sets depends on the choice of X in which the sets are
sitting. For example (0, 1] is not open in R but it is open in the set (0,1] U [2, 3].

(ii) A subset V of X can be an open and closed subset of X. For example, (0, 1] is open and
closed subset of (0, 1] U [2, 3].

(iii) A subset V' can be neither closed nor open in X. For example, (0, 1] is neither closed nor
open in R.

Proposition 2.16 We have the following assertions.
(i) A subset V is open in X if and only if X \'V is closed in X.
(i) The empty set O and the whole set X both are open.
(iii) If {Vi}icr is a family of open subsets of X, then the union |J;c; Vi is open in X.

(iv) For any finitely many Vi, ..., Vn open subsets of X, we have Vi N---NVx is open in X.
For example, (0,1] is neither closed nor open in R.

Exercise 2.17 (i) Let V be a subset of X. A point z € V is said to be an interior point of
V if there is r > 0 such that B(z,r) C V. If we put int(V) the set of all interior points
of V, show that int(V') is an open subset of X.

(ii) A metric d on X is said to be non-archimedean if it satisfies the strong triangle inequality,
that is, d(z,y) < max(d(z,z),d(z,y)) for all z,y and z € X (see also Example 1.2
(iv)). Show that if d is a non-archimedean metric on X, then for every closed ball

B(a,r):={z € X :d(a,z) <r} is an open set in X.

3 Sequentially Compact Metric Spaces

Throughout this section, (X, d) always denotes a metric space. Let (x,) be a sequence in X.
Recall that a subsequence (z,, )3, of (x,) means that (n)7°, is a sequence of positive integers
satisfying n; < ng < -+- < ng < ngyq < ---, that is, such sequence (ny) can be viewed as a
strictly increasing function n : k € {1,2,..} — ny € {1,2,...}.

In this case, note that for each positive integer NV, there is K € N such that ng > N and thus
we have ng > N for all k > K.

Proposition 3.1 Let (x,) be a sequence in X. Then the following statements are equivalent.
(i) (xy,) is convergent.
(11) Any subsequence (xy,) of (xy) converges to the same limit.

(111) Any subsequence (xy,) of (xy) is convergent.

Proof: Part (ii) =(7) is clear because the sequence (z,) is also a subsequence of itself.

For the Part (i) = (ii), assume that limz,, = a € X exists. Let (z,, ) be a subsequence of (zy,).
We claim that limz,, = a. Let € > 0. In fact, since limx,, = a, there is a positive integer N
such that d(a,z,) < € for all n > N. Notice that by the definition of a subsequence, there is a



positive integer K such that ny > N for all k > K. So, we see that d(a,z,, ) < ¢ for all k > K.
Thus we have limy_, z,, = a.

Part (ii) = (ii7) is clear.

It remains to show Part (iii) = (i7). Suppose that there are two subsequences (z,,)72; and
(Tm,; )52, converge to distinct limits. Now put kj := n;. Choose m; such that ny; < my and
then put ke := my. Then we choose n; such that ko < m; and put ks for such n;. To repeat
the same step, we can get a subsequence (wy,){2; of (z,,) such that zy, = z,, for some ny
and zy,, , = T, for some mj. Since by the assumption lim; x,,, # lim; z,;, lim; 2, does not
exist which leads to a contradiction.

The proof is finished. O

We now recall the following important theorem in R (see [1, Theorem 3.4.8]).

Theorem 3.2 Bolzano- Weierstrass Theorem Fvery bounded sequence in R has a conver-
gent subsequence.

Definition 3.3 X is said to be sequentially compact if for every sequence in X has a convergent
subsequence.

In particular, a subset A of X is sequentially compact if every sequence has a convergent
subsequence with the limit in A.

Example 3.4 (i) Every closed and bounded interval is sequentially compact.
In fact, if (z,,) is any sequence in a closed and bounded interval [a, b], then (z,,) is bounded.
Then by Bolzano-Weierstrass Theorem (see [1, Theorem 3.4.8]), (z,,) has a convergent
subsequence (x,, ). Notice that since a < z,, < b for all k, then a < limy z,, < b, and
thus limy, x,,, € [a,b]. Therefore A is sequentially compact.

(ii) (0,1] is not sequentially compact. In fact, if we consider x,, = 1/n, then (z,,) is a sequence
in (0,1] but it has no convergent subsequence with the limit sitting in (0, 1].

Proposition 3.5 If A is a sequentially compact subset of X, then A must be a closed and
bounded subset of X.

Proof: We first claim that A is bounded. Suppose not. We suppose that A is unbounded. If we
fix an element x; € A, then there is z9 € A such that d(z1,22) > 1. Using the unboundedness
of A, we can find an element x3 in A such that d(z3,zx) > 1 for £ = 1,2. To repeat the same
step, we can find a sequence (z,) in A such that d(z,,z,) > 1 for n # m. Thus A has no
convergent subsequence. Thus A must be bounded

Finally, we show that A is closed in X. Let (x,) be a sequence in A and it is convergent. It needs
to show that lim, x,, € A. Note that since A is compact, (x,) has a convergent subsequence
(xn,) such that limy z,, € A. Then by Proposition 3.1, we see that lim, z,, = limy z,, € A.
The proof is finished. O

Corollary 3.6 Let A be a subset of R. Then A is sequentially compact if and only if A is a
closed and bounded subset.

Proof: The necessary part follows from Proposition 3.5 at once.
Now suppose that A is closed and bounded. Let (z,) be a sequence in A and thus (z,) is a



bounded sequence in R. Then by the Bolzano- Weierstrass Theorem, (z,,) has a subsequence
(2n,) which is convergent in R. Since A is closed, limy x,,, € A. Therefore, A is sequentially
compact. d

Remark 3.7 From Corollary 3.6, we see that the converse of Proposition 3.5 holds when
X =R, but it does not hold in general. For example, if X = ¢*°(N) and A is the closed unit
ball in ¢>°(N), that is A := {x € {*°(N) : ||z]|oc < 1}, then A is closed and bounded subset of
¢>°(N) but it is not sequentially compact. Indeed, if we put e, = ()72, € £*°(N), where
eni = 1 as i = n; otherwise, e, ; = 0. Then (e,) is a sequence in A but it has no convergent
subsequence because ||e;, — en||c0 = 2 for n # m.

Definition 3.8 X is said to be compact if for any open cover {J,}aea of X, that is, each J,
is an open set and
X =] Ja

aEA
we can find finitely many Jq,, .., Jo, such that X = J,, U---U J,

anN

Remark 3.9 Notice that since for each open set V in R and for each element x € V', we can
find r, > 0 such that J, := (z —rg, 2+ 1) € V. So, we have V' = J,y Jo. Hence, in the
Definition 3.8, those open sets J,’s can be replaced by open intervals.

Example 3.10 (0,1] is not compact. In fact, if we put J, = (1/n,2) for n = 2,3..., then
(0,1] € U2s Jn, but we cannot find finitely many Jy,,, ..., Jp, such that (0,1] C Jp,, U-- Uy,
So (0,1] is not compact.

Proposition 3.11 If X is compact, then it is sequentially compact.

Proof: Suppose that X is compact but it is not sequentially compact. Then there is a sequence
(zp,) in X such that (x,) has no subsequent. Put F' = {x,, : n = 1,2,...}. Then F is infinite
and hence for each element a € X, there is d, > 0 such that B(a,d,) N F is finite. Indeed,
if there is an element a € X such that B(a,d) N F is infinite for all § > 0, then (x,) has a
convergent subsequence with the limit a. Let J, := B(a,d,). On the other hand, we have
X = U,ex Ja- Then by the compactness of X, we can find finitely many ay, ...,an such that
X = Jg, U---UJy,. In particular, we have F' C J,, U---U J,,. Then by the choice of J,’s, F'
must be finite. This leads to a contradiction. Therefore, X is sequentially compact.

O

Remark 3.12 Indeed, we see that Proposition 3.11 holds for a general topological space from
the proof above. The following Theorem 3.13 is an important feature of a metric space. We
will show the case when X = R in the next section. The complete proof for the general metric
spaces case is given in Section 5.

Theorem 3.13 Let X be a metric space. Then X is sequentially compact if and only if it is
compact.

Proof: See Theorem 5.11 below (see also [2, Section 9.5, Theorem 16]). O



4  Sequentially Compact Sets and Compact Sets in R
The following Lemma can be directly shown by the definition, so, the proof is omitted here.

Lemma 4.1 Let A be a subset of R. The following statements are equivalent.

(i) A is closed.

(ii) For each element x € R\ A, there is 05 > 0 such that (x — 6z, x + ;) N A = 0.
(iii) If (zy,) is a sequence in A and lim x,, exists, then limz,, € A.

Before going to show Theorem 3.13 for the case of R, let us first recall one of the important
properties of real line.

Theorem 4.2 Nested Intervals Theorem Let (I, := [ay,b,]) be a sequence of closed and
bounded intervals. Suppose that it satisfies the following conditions.

(i) : [ 2, 2132 ---.
(i) : limy, (b, — a,) = 0.
Then there is a unique real number § such that (oo, I = {&}.

Proof: See [1, Theorem 2.5.2, Theorem 2.5.3]. O

Theorem 4.3 (Heine-Borel Theorem) Every closed and bounded interval [a,b] is a compact
set.

Proof: Suppose that [a,b] is not compact. Then there is an open intervals cover {J,}oep of
[a, b] but it it has no finite sub-cover. Let I1 := [a1, b1] = [a, b] and m; the mid-point of [a1, b;].
Then by the assumption, [a1, m1] or [my,b;] cannot be covered by finitely many J,’s. We may
assume that [a1, m1] cannot be covered by finitely many J,’s. Put Iy := [ag, ba] = [a1, m1]. To
repeat the same steps, we can obtain a sequence of closed and bounded intervals I, = [ay,, by]
with the following properties:

(a) [ 22132 ;
(b) limy, (b, — an) = 0;
(c) each I,, cannot be covered by finitely many J,’s.

Then by the Nested Intervals Theorem, there is an element £ € (), I,, such that lim,, a,, =
lim,, b, = €. In particular, we have a = a; <& <b; =b. So, there is ap € A such that £ € J,,.
Since J,, is open, there is € > 0 such that (§ —e,§ +¢) C J,,. On the other hand, there is
N € N such that ay and by in (§ — &,£ 4 €) because lim, a,, = lim,, b, = £&. Thus we have
In = [an,bn] C (£ — &, +¢) C Ju,. It contradicts to the Property (c¢) above. The proof is
finished. O

Theorem 4.4 Let A be a subset of R. The following statements are equivalent.



(i) A is compact.
(ii) A is sequentially compact.
(iii) A is closed and bounded.

Proof: The result is shown by the following path (i) = (ii) = (iii) = (7).

Part (i) = (ii) can be obtained by Proposition 3.11 immediately.

Part (i1) = (4ii) follows from Proposition 3.5 at once.

It remains to show (iii) = (i). Suppose that A is closed and bounded. Then we can find a closed
and bounded interval [a,b] such that A C [a,b]. Now let {Ja}aca be an open intervals cover of
A. Notice that for each element x € [a,b] \ A, there is 6, > 0 such that (x — 0z, x+0,) NA =10
since A is closed. If we put I, = (x — 6y, + 05) for x € [a,b] \ A, then we have

o C | wu | L.

acl z€[a,b]\ A

Using the Heine-Borel Theorem 4.3, we can find finitely many Jo’s and 1,’s, say Ju,, ..., Jay
and Iy, ..., Iz, such that A C [a,b] C Jo, U---UJgy Uy U--- Uy, . Notethat I, NA=10
for each x € [a,b] \ A by the choice of I,. Therefore, we have A C Jo, U---U Jy, and hence
A is compact.

The proof is finished. O

5 Complete Metric Spaces

Let (X, d) be a metric space as before.

Definition 5.1 A sequence (z,,) in X is called a Cauchy sequence if for any ¢ > 0, there is a
positive integer N such that d(x,,z,) < ¢ for all m,n > N.

Example 5.2 Let e, € (*°(N) be defined as in Remark 3.7. Then (e,) is not a Cauchy
sequence.

Proposition 5.3 Fvery convergent sequence is a Cauchy sequence.

Proof: Let (z,,) be a convergent sequence in X. Suppose that lim, x,, = v € X. Then for any
e > 0, there is N € N such that d(v,x,) < € for all n > N. Thus for any m,n > N, we see
that d(xm, zn) < d(Tm,v) + d(v,z,) < 2e. Thus (z,) is a Cauchy sequence. O

Remark 5.4 The converse of Proposition 5.3 does not hold in general. For example, if we
consider X = (0, 1] and z,, = 1/n, then (z,) is a Cauchy sequence but it is not convergent in
(0,1].

The following definition is one of important concepts in mathematics world.

Definition 5.5 X is said to be complete if every Cauchy sequence in X is convergent.

10



The following result is a very important motivation of the definition of completeness.

Theorem 5.6 R is complete.

Proof: Let (z,,) be a Cauchy sequence in R. We first claim that (z,,) must be bounded. Indeed,
by the definition of a Cauchy sequence, if we consider € = 1, then there is a positive integer NV
such that |z, —xn| <1 for all m > N and thus we have |z,,| < 1+ |zy]| for all m > N. So,
if we let M = max(|x1|, ..., |xn_1],|zNn]| + 1), then we have |z,| < M for all n. Hence (x,) is
bounded.

So, we can now apply the Bolzano-Weierstrass Theorem, (x,) has a convergent subsequence
(xn,,). Let L :=limy z,, . We are going to show that L = lim,, zy,.

Let € > 0. Since (z,) is Cauchy, there is N € N such that |z,, — z,| < € for all m,n > N.
On the other hand, since limy x,, = L, we can find a positive integer K so that |L — x| < ¢
for all £ > K. Now if we choose r > K such that n, > N, then for any n > N, we have
|xy, — L| < |xy — zp, | + |Tn, — L] < 2e. Thus (z,) is convergent with lim,, xz,, = L.

The proof is finished. O

Example 5.7 (i) ¢>°(N) := {(x;)2, : sup; |z;| < oo} is complete under the sup norm || - ||oc.
In fact, notice that if (xy) is Cauchy sequence in ¢*° and if we let x, = (2,,;):2;, then for
each i =1,2..., (zp;)52; is a Cauchy sequence in R. Thus lim, z, ; exists in R for each
i. Write & := lim, x,; € R and £ := (§). We are now going to show that £ € (> and
lim,, ||€ — zn||cc = 0.

Notice that since (z,) is a Cauchy sequence in £*°, so, for each € > 0, there is N € N
such that ||z, — Zm||ec < € for all m,n > N and hence we have

|-Tn,i - $m,i| < Sl]ip |xn,k - J:m,k| = ”Xn - Xm”oo <e

for all m,n > N and for all ¢ = 1,2.... So if we fix ¢ and m > N and taking n — oo,
then we have |§; — 2,,;| < € and hence ||{ — Xm||oc < € for m > N. From this we see that
limy,, [|§ — Xm||oo = 0 and thus £ € £*° because > is a vector space.

(ii) ¢o(N) is complete under the sup-norm. In fact every closed subset of a compete metric
space must be complete (why?). Since ¢ is closed in £*°, ¢y is complete.

(iii) P(N) for 1 < p < oo all are complete metric spaces under the fP-norm.
(iv) Cla,b] :=={f : [a,b] — R : f is continuous} is complete under the sup-norm.

Proposition 5.8 Let (F,,) be a sequence of closed and bounded non-empty subsets of a complete
metric space X. For each n, put diam(F,) := sup{d(x,y) : x,y € F,} (the diameter of F,).
Suppose that it satisfies the following conditions.

(a) F DF; D Fyev--- .
(b) lim, diam(F,) = 0.

If X is complete, then there is a unique element & € X such that (), F, = {£}.
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Proof: For each F,,, we take an element z,, in F),. Then by the condition of (a) and (b) above,
(zp,) forms a Cauchy sequence in X. Since X is complete, £ := limx,, exists in X. Note that
£ € F, for all n because each F, is closed and F,,, 2 Fp,1 2 --- for all m. So, §£ € ), Fi.

On the other hand, the condition (b) implies that the intersection (), F;, contains at most one
element. The proof is finished. O

Remark 5.9 The assumption of completeness of X in Proposition 5.8 is essential. For exam-
ple, if we consider X = (0, 1] and F}, = (0, n%rl] for n = 1,2..., then F,’s satisfies the conditions
(a) and (b) above but (), Fy, = 0.

Definition 5.10 X is said to be totally bounded if for any r > 0, there exists finitely many
open balls of radius r, say By, ..., By such that X = By U---U By.

The following can be viewed as the generalization of the real case (see Theorem 5.6).

Theorem 5.11 The following statements are equivalent.
(i) X is compact.
(i) X is sequentially compact.

(iii) X is complete and totally bounded.

Proof: Part (i) = (ii) has been shown in Proposition 3.11.

For Part (i) = (i7i), assume that X is sequentially compact. We first claim that X is complete.
Let (z,,) be a Cauchy sequence in X. Notice that (x,) has a convergent subsequence (x, )
from the assumption. Let limyxz,, = v € X. Using the same argument as in the proof of
Theorem 5.6, we see that v = lim,, x,, and hence X is complete.

Secondly, we show that X is totally bounded. Suppose not. Then there is r > 0 such that
X cannot be covered by finitely many open balls of radius r. Fix z; € X. Then there is
x9 € X with d(zg,z1) > r. Similarly, we can find z3 € X such that d(x3,xx) > r for k = 1,2
because the choice of . To repeat the same argument, we have a sequence (z,) in X such
that d(xy, xy,) > r for all n # m. Therefore, (x,) has no convergent subsequence. It leads to
a contradiction and hence X must be totally bounded.

It remains to show (iii) = (i). Assume that X is complete and totally bounded.

Suppose that X is not compact. Then there is open cover of X, says J := {J;}icr, which has
no finite subcover of X.

Since X is totally bounded by the assumption, then there are finitely many open balls By, ..., By,
and each ball has radius 1 such that X = By U---U B,,. Since J has no finite subcover, there
must exist some By which cannot be covered by finitely J;’s. Let B; be such open ball. Put
F) := By and hence F also cannot be covered by finitely many J;’s. Using totally boundedness
of X again, we can find finitely many open balls D, ..., D; and each has radius 1/2 such that
Fy C D1U---UD;and D;NF; # () for alli = 1, ..,1. Since F| cannot be covered by finitely many
Ji’s, there must exist some D; such that F1 N D; shares the same property. Put I3 := F1 N D;.
To repeat the same step, we can get a sequence of closed and bounded subsets (F},) of X which
has the following properties.
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(8) FY DFy DF3 D eevees _
(b) dla’m(Fn) — 0 asn— oo.
(c) Each F,, cannot be covered by finitely many J;’s.

By using Proposition 5.8, we have (), F,, = {{} for some element £ € X. On the other hand,
we have & € J;, for some J;, € J. Since J;, is open, there is r > 0 such that B(&,r) C J;,.
It is because lim,, diam(F,) = 0, we can find Fy such that diam(Fy) < r. Since { € Fy, we
have Fy C B(&,r) C J;, which contradicts to the property (c) above.

The proof is finished. O

Exercise 5.12 Let A be a subset of X.
(i) Show that if X is complete, then A is complete if and only if A is closed in X.

(ii) Show that if A is complete, then A is closed in X.

6 Continuous mappings
Throughout this section, let (X, d) and (Y, p) be metric spaces.

Definition 6.1 Let f : X — Y be a function from X into Y. We say that f is continuous at
a point ¢ € X if for any € > 0, there is 6 > 0 such that p(f(x), f(c)) < € whenever x € X with
d(xz,y) < 0.

Furthermore, f is said to be continuous on A if f is continuous at every point in X.

Remark 6.2 It is clear that f is continuous at ¢ € X if and only if for any € > 0, there is
§ > 0 such that B(c,8) C f~H(B(f(c),¢)).

Proposition 6.3 With the notation as above, we have

(i) f is continuous at some ¢ € X if and only if for any sequence (x,) € X with limz,, = ¢
implies lim f(x,) = f(c).

(i) The following statements are equivalent.

(ii.a) f is continuous on X.
(i.b) f~Y(W):={z € X : f(x) € W} is open in X for any open subset W of Y.
(ii.c) f~YF) :={x € X : f(z) € F} is closed in X for any closed subset F of Y.

Proof: Part (3):

Suppose that f is continuous at c. Let (z,,) be a sequence in X with lim z,, = ¢. We claim that
lim f(z,) = f(c¢). In fact, let € > 0, then there is § > 0 such that p(f(z), f(¢)) < € whenever
x € X with d(x,c) < 4. Since limx,, = ¢, there is a positive integer N such that d(z,,c) <
for n > N and hence p(f(x,), f(c)) < e for all n > N. Thus lim f(z,) = f(c).

For the converse, suppose that f is not continuous at ¢. Then we can find € > 0 such that for
any n, there is x,, € X with d(zp,c) < 1/n but p(f(zn), f(c)) > . So, if f is not continuous

13



at ¢, then there is a sequence (x,,) in X with limz,, = ¢ but (f(x,)) does not converge to f(c).
Part (iia) < (iib):

Suppose that f is continuous on X. Let W be an open subset of Y and ¢ € f~!(W). Since W
is open in Y and f(c) € W, there is € > 0 such that B(f(c),e) C W. Since f is continuous at
¢, there is § > 0 such that B(c,0) C f~Y(B(f(c),e)) € f~Y(W). So f~1(W) is open in X.

It remains to show that the converse of Part (ii). Let ¢ € X. Let € > 0. Put W := B(f(c),e).
Then W is an open subset of Y and thus ¢ € f~1(W) and f~'(W) is open in X. Therefore,
there is 6 > 0 such that B(c,8) C f~1(W). So, f is continuous at c.

Finally, the last equivalent assertion (ii.b) < (ii.c) is clearly from the fact that a subset of
a metric space is closed if and only if its complement is open in the given metric space (see
Proposition 2.16 (7)).

The proof is complete. g

Corollary 6.4 Let f : X =Y and g : Y — Z be continuous maps between metric spaces.
Then the composition go f : X — Z is also continuous on X.

Proof: 1t is clear from Proposition 6.3 at once. O

Definition 6.5 A bijection f : X — Y is said to be a homeomorphism if f and its inverse f~!
both are continuous. In this case, X is said to be homeomorphic to Y.

Proposition 6.6 If f: X — Y is a continuous map and X is compact, then the image f(X)
18 also a compact subset of Y. Consequently, if f is a continuous bijection, then f must be a
homeomorphism, that is, the inverse map f~':Y — X is automatically continuous.

Proof: Let {V;}ier be an open cover of f(X), that is, each V; is an open subset of Y and
f(X) € U;es Vi Hence {f71(V;)}ier is also an open cover of X by Proposition 6.3. So by the
compactness of X, there are finitely many iy, ..,iny € I such that X = f~1(V;))U---Uf~1(Viy).
This gives f(A) is covered by V;,,...,,Viy. Thus f(A) is compact.

For showing the inverse f~! : Y — X, by Proposition 6.3, it needs to show that f(F) =
(f~H)~Y(F) is a closed subset of Y for every closed subset F of X. In fact, it is easy to see that
every closed subset of a compact metric space must be compact and every compact subset of
a metric space is also closed. Hence F' is a compact subset of X and thus f(F') is compact by
above. So f(F) is a closed subset of Y as desired. The proof is finished. O

Definition 6.7 We say that two metrics di and ds on a set X are equivalent if there are
positive constants ¢, ¢ such that d/dy(z,y) < da2(x,y) < cdi(x,y) for all z,y € X.

Example 6.8 Let X = (0,1) and d be the usual metric on X, that is d(z,y) := |x —y|. Define
lz—y]
1+|z—y|
on (0,1). In fact, one can directly check that we have p(z,y) < d(z,y) < 2p(x,y) for all

x,y € (0,1).

a metric on X by p(z,y) := for z,y € (0,1). Then the metrics d and p are equivalent

Proposition 6.9 Let di and do be the metrics on X. If di and do are equivalent, then the
identity map I : (X,dy) — (X,d2) is a homeomorphism.

Proof: It clearly follows from Proposition 6.3. O

14



Remark 6.10 (i) The converse of Proposition 6.9 does not hold. For example, let X = R
and d the usual metric. Let p be given as in Proposition 6.9. Then for a sequence (x,,)
and an element z in R, we see that d(z,,z) — 0 if and only if p(x,,z) — 0. So, the
identity I : (X,d) — (X, p) is a homeomorphism. However, if X = R, then the usual
metric d is not equivalent to the metric p defined above. In fact, although we always
have p(z,y) < d(x,y) for all z,y € R, it is impossible to find a positive constant ¢ such
that d(z,y) < cp(x,y) for all x,y € R. Notice that if there is such ¢, then we have
|z —y| =d(z,y) < c—1for all z # y in R. It is absurd.

(ii) The completeness of metric spaces are not preserved under homeomorphisms.
For example, consider X = R. Let d;(x,y) := |z — y| and da(x,y) :=|e™® — e Y| for x,y
in R. Then the identity map I : (X, d1) — (X, d2) is a homeomorphism (check)! and
(X, dy) is complete. However, (X, dg) is not complete. In fact, if we let =, = n for
n =1,2..., then (x,) is Cauchy but not convergent in R with respect to the metric ds.

Definition 6.11 A mapping f : (X,d) — (Y, p) is called a contraction if there is 0 < r < 1
such that p(f(z), f(z')) < rd(z,z’) for all z,2" € X.

Remark 6.12 It is clear that every contraction must be continuous.

Example 6.13 (i) Define f : (1,00) — (1,00) by f(z) := /x. Then f is a contraction
since we always have |f(z) — f(y)| < 4|z — y| for all z,y € (1,00). Indeed, for any
z,y € (1,00) with < y, then by the Mean Value Theorem, there is ¢ € [z, y] such that

f(x) — f(y) = f'(e)(x —y). Notice that f/(c) = 54 < &.

Proposition 6.14 Let (X, d) be a complete metric space. If f: X — X is a contraction, then
there is a fized point for f, that is, there is ¢ € X such that f(c) = c.

Proof: Let 0 < r < 1 be a contraction ratio for f, that is, d(f(x), f(y) < rd(z,y) for all
z,y € X. Fix 21 € X. Put 2,11 = f(zp), forn=1,2,....
We first claim that (z,,) is a Cauchy sequence in X. In fact, notice that we have d(zp42, Tni1) =
d(f(xnt1), f(xn)) < rd(zpt1,x,) for all n = 1,2.... So, we have

d(Tpy1, ) < r”fld(azg,xl)

for all n = 1,2.... From this, we have

A@ngpan) < Y dppae) <Y rFd(ag, 1) (6.1)
n<k<n+p—1 n<k<n+p—1

for any n,p = 1,2.... On the other hand, since 0 < r < 1, we have > 7, r* < 0o and hence,
for any ¢ > 0, there is a positive integer N such that > ;2 r* < e for all n > N. So, by the
Eq 6.1 above, we see that (z,,) is a Cauchy sequence in X. This implies that lim x,, = ¢ exists
in X because X is complete. Since f is continuous and x,+1 = f(zy,), the result follows from

¢ =limz,+1 = lim f(z,) = f(c).

The proof is finished. O
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Remark 6.15 The Proposition 6.14 does not hold if f is not a contraction. For example, if
we consider f(z) =x — 1 for z € R, then it is clear that |f(z) — f(y)| = |z — y| and f has no
fixed point in R.

Exercise 6.16 A function g : (X,d) — (Y, p) is called a Lipschitz function if there is a C > 0
such that p(g(x),g(z")) < Cd(z,2’) for all x,2’ € X. Now let A C X be a non-empty subset
and assume that f: A — Y is a Lipschitz function.

(i) Show that f is continuous on A.
(ii) Show that if (x,) is a Cauchy sequence in A, then f(x,) is a Cauchy sequence in Y.

(iii) Show that if Y is complete, then there is a unique continuous mapping F : A — Y such
that F(z) = f(x) for all z € A.

Answer:
Part (i) and (i) are clearly shown by the definition of Lipschitz functions.
The proof of Part (ii7) is divided by the following several claims.
Claim 1. If (z,,) is a sequence in A and lim z,, exists, then lim f(x,) exists.
Claim 2. If (z,) and (y,) both are convergent sequences in A and limz, = limy,, then
lim f(2,) = lim f(yn).
By Claim 1, L := lim f(x,) and L' = lim f(y,) both exist in Y. For any ¢ > 0, let 6 > 0 be
found as in Claim 1. Since limz,, = limy,, there is N € N such that d(z,,y,) < ¢ for all
n > N and hence, we have p(f(zn), f(yn)) < € for all n > N. Taking n — oo, we see that
p(L,L') <eforalle>0. So L =1L" Claim 2 follows.
Recall that an element x € A if and only if there is a sequence (x,,) in A converging to x.
Now for each x € A, we define

F(z) :=lim f(x,)

if (zy,) is a sequence in A with limz,, = x. It follows from Claim 1 and Claim 2 that F is a
well defined function defined on A and F(z) = f(z) for all z € A.

So, it remains to show that F is continuous. Then F is a continuous extension of f to A as
desired.

Now suppose that F is not continuous at some point z € A. Then there is € > 0 such that for
any § > 0, there is # € A satisfying d(z, z) < 6 but p(F(z), F(z)) > ¢. Notice that for any § > 0
and if d(x, z) < & for some z € A, then we can choose a sequence (x;) in A such that lim z; = z.
Therefore, we have d(z;,z) < ¢ and p(f(z;), F(z)) > /2 for any i large enough. Therefore,
for any 6 > 0, we can find an element z € A with d(x, z) < 6 but p(f(x), F(z)) > /2. Now
consider § = 1/n for n = 1,2.... This yields a sequence (z,) in A which converges to z but
p(f(zy), F(z)) > €/2 for all n. However, we have lim f(z,) = F(z) by the definition of F' which
leads to a contradiction. Thus F is continuous on A.

Finally the uniqueness of such continuous extension is clear.

The proof is finished.

Remark 6.17 In general, the continuous extension of a continuous function may not exist.
For example, let X =Y = R and A = (0,1]. If we consider f(z) = 1/x for x € A, then f
does not have continuous extension to A = [0,1]. In fact, if such continuous extension F exists
on [0,1], then F' must be bounded on [0,1], in particular, it is bounded on (0,1] and hence,
F(z) = f(xz) = 1/2 is bounded on (0, 1]. It leads to a contradiction.
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Definition 6.18 A mapping f : (X,d) — (Y, p) is said to be uniformly continuous on X if for
any € > 0, there is § > 0, such that p(f(z), f(2')) < e, whenever, d(z,z’) < 4.

Proposition 6.19 If f : (X,d) — (Y, p) is continuous and X is compact, then f is uniformly
continuous on X.

Proof: Compactness argument:

Let ¢ > 0. Since f is continuous on A, then for each x € X, there is 6, > 0, such that
p(f(y), f(z)) < e whenever y € X with d(x,y) < 0. Now for each x € X, set J, = B(z, %)
Then X C (U,cx Jo- By the compactness of X, there are finitely many 1, ..., zy € X such that

X =Jy U---UJgy. Now take 0 < § < min(é%, s 6:”21\’). Now for z,y € X with d(z,y) < 0,
then z € J,, for some k = 1,.., N, from this it follows that d(x,xj) < 617’“ and d(y,xg) <

d(y,z) + d(z,z) < 612—’“ + % = 0g,. So for the choice of §,,, we have p(f(y), f(zr)) < €
and p(f(z), f(xg)) < €. Thus we have shown that p(f(x), f(y)) < 2¢ whenever z,y € X with
d(z,y) < 0. The proof is finished.

Sequentially compactness argument:

Suppose that f is not uniformly continuous on X. Then there is € > 0 such that for each
n=1,2,.., we can find =, and y, in X with d(z,,yn) < 1/n but p(f(x,), f(yn)) > €. Notice
that by the sequentially compactness of X, (x,) has a convergent subsequence (z,,) with
a = limy z,, € X. Now applying sequentially compactness of X for the sequence (yp, ), then
(yn, ) contains a convergent subsequence (ynkj) such that b := lim; Y, € X. On the other

hand, we also have lim; Ty, = Q- Since d(xnkj , ynkj) < 1/ny, for all j, we see that a = b. This
implies that lim; f(a:nkj) = f(a) = f(b) = lim; f(ynkj). This leads to a contradiction since we
always have p(f(acnkj), f(ynkj )) > e > 0 for all j by the choice of z,, and y, above. The proof
is finished. O

Proposition 6.20 Assume that X andY are complete. Let A be a subset of X and f : A =Y
a continuous function. If A is totally bounded, then the following statements are equivalent.

(i): f is uniformly continuous on A.

(ii): There is a unique continuous function F defined on the closure A such that F(z) = f(x)

forallx € A.

Proof: For the Part (ii) = (i), we first notice that A is also totally bounded while A is
totally bounded. Indeed, for any r > 0, we can find finitely many element x1,..,zy in A
such that A C B(x1,7/2)U--- U B(xy,7/2). Now for any z € A, we have B(z,7/2) N A # ()
and hence, B(z,7/2) N B(xy,r/2) # 0 for some k. It implies that z € B(xzg,r). So, A C
B(x1,7) U -+ U B(xy,r). Therefore, A is totally bounded too. Then by Theorem 5.11, A is
compact since X is complete. Thus, the implication (i7) = (i) follows from Proposition 6.19
at once.

The proof of Part (i) = (i) is exactly the same in Exercise 6.16. Assume that f is uniformly
continuous on A.

We first notice that if (x,,) is a sequence in A and lim x,, exists, then lim f(z,,) exists.

It needs to show that (f(x,)) is a Cauchy sequence because Y is complete. Indeed, let € > 0.
Then by the uniform continuity of f on A, there is § > 0 such that p(f(x), f(y)) < € whenever
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x,y € A with d(z,y) < d. Notice that (z,) is a Cauchy sequence since it is convergent. Thus,
there is a positive integer N such that d(z,,,z,) < ¢ for all m,n > N. This implies that
p(f(xm), f(zy)) < e for all m,n > N and hence, lim f(x,) exists in Y.

Then the rest of the proof follows from Exercise 6.16 at once. O
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