
MMAT 5000: Analysis I (2016 1st term)

1 Basic Definitions

Throughout the note, we use the following notation:

(i) R = the set of all real numbers.

(ii) C = the set of all complex numbers.

(iii) Q = the set of all rational numbers.

(iv) N = the set of all natural numbers.

Definition 1.1 Let X be a non-empty set. A function d : X ×X → R is said to be a metric
on X if it satisfies the following conditions.

(i) d(x, y) ≥ 0 for all x, y ∈ X.

(ii) d(x, y) = 0 if and only if x = y.

(iii) (Symmetric property) d(x, y) = d(y, x) for all x, y ∈ X.

(iv) (Triangle inequality) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

In this case, the pair (X, d) is called a metric space.

Example 1.2 :

(i) For x, y ∈ R, put d(x, y) = |x − y|. Then d is a metric on R and d is called the usual
metric on R.

(ii) For x = (x1, x2), y = (y1, y2) ∈ R2, define:
d∞(x, y) = max(|x1 − x2|, |y1 − y2|);
d1(x, y) = |x1 − x2|+ |y1 − y2|;
d2(x, y) =

√
|x1 − x2|2 + |y1 − y2|2. Then all are metrics on R2.

(iii) Let X be any non-empty set. For x, y ∈ X, let d(x, y) = 0 if x = y; otherwise, d(x, y) = 1.
Then d is a metric on X. In this case, d is called the discrete metric on X and (X, d) is
called a discrete metric space.
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(iv) Fix a prime number p. For a
b ∈ Q, define |ab |p = p−v if a

b = pv a
′

b′ where v ∈ Z and p - a′b′.
If we put dp(x, y) = |x − y|p for x, y ∈ Q, then dp is a metric on Q. Furthermore, dp
satisfies the strong triangle inequality, i.e.,

dp(x, y) ≤ max(dp(x, z), dp(z, y))

for all x, y, z ∈ Q.

Definition 1.3 Let V be a vector space over a field K, where K = R or C. A function
‖ · ‖ : V → R is called a norm on V if it satisfies the following conditions.

(i) ‖x‖ ≥ 0 for all x ∈ V .

(ii) ‖x‖ = 0 if and only if x = 0.

(iii) (Triangle inequality) ‖x− y‖ ≤ ‖x− z‖+ ‖z − y‖ for all x, y, z ∈ V .

In this case, the pair (V, ‖ · ‖) is called a normed space.

Proposition 1.4 Let (V, ‖ · ‖) be a normed space. If we put d(x, y) = ‖x − y‖ for x, y ∈ V ,
then d is a metric on V . Consequently, every normed space is a metric space.

Remark 1.5 Let V be a vector space. Notice that the discrete metric d on V must not be
induced by a norm, i.e., we cannot find a norm ‖ · ‖ on V such that d(x, y) = ‖x − y‖ for
x, y ∈ V .

Example 1.6 The following are important examples of normed spaces.

(i) Let `∞ = {(xn) : xn ∈ C, n = 1, 2...; sup |xn| <∞} and c0 = {(xn) ∈ `∞ : lim |xn| = 0}.
Put ‖(xn)‖∞ = sup |xn|.

(ii) Let `1 = {(xn) : xn ∈ C, n = 1, 2...;
∑∞

n=1 |xn| <∞}. Put ‖(xn)‖1 =
∑∞

n=1 |xn|.

(iii) Let `2 = {(xn) : xn ∈ C, n = 1, 2...;
∑∞

n=1 |xn|2 <∞}. Put ‖(xn)‖2 =
√∑∞

n=1 |xn|2.

Exercise 1.7 :

(1) Let (X, d) be a metric space. Define

ρ(x, y) =
d(x, y)

1 + d(x, y)

for x, y ∈ X. Show that ρ is also a metric on X.

(2) Let (X, dX) and (Y, dY ) be the metric spaces. Define

ρ((x, y), (x′, y′)) = dX(x, x′) + dY (y, y′)

for x, x′ ∈ X and y, y′ in Y . Show that ρ is a metric on the product space X × Y =
{(x, y) : x ∈ X; y ∈ Y }.

(3) Let (X, d) be a metric space and let A be a subset of X. We say that A is bounded if
there is M > 0 such that d(a, a′) ≤M for all a, a′ in A.
Show that if A1, ..., AN (N <∞) all are bounded subsets of X, show that A1∪· · · · · ·∪AN
is also a bounded subset of X.
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2 Convergent Sequences

Throughout this section, (X, d) will denote a metric space.
For a ∈ X and r > 0, put
B(a, r) = {x ∈ X : d(a, x) < r}, called the open ball with center a of radius r;
B(a, r) = {x ∈ X : d(a, x) ≤ r}, called the closed ball with center a of radius r.

Recall that a sequence on X is a function f : {1, 2, ..} → X. Write f(n) = xn ∈ X. Also,
if (nk) is a sequence of positive integers with n1 < n2 < n3 < · · · · · · , then we call (xnk

) a
subsequence of (xn).

Definition 2.1 A sequence (xn) is said to be convergent in X if there is an element a ∈ X
such that d(a, xn)→ 0 as n→∞, i.e., it satisfies the following condition.

For any ε > 0, there is a positive integer N such that xn ∈ B(a, ε) for all n ≥ N .

In this case, a is called a limit of the sequence (xn). Also (xn) is said to be divergent if it is
not convergent

Proposition 2.2 If (xn) is a convergent sequence in X, then its limit is unique. Now we can
write limxn for the limit of (xn).

Proof: Suppose that a and b both are the limits of (xn) with a 6= b in X. Then d(a, b) > 0.
Choose 0 < 2ε < d(a, b). By the definition of limit, we can find the integers N1 and N2 such that
d(a, xn) < ε for all n ≥ N1 and d(b, xn) < ε for all n ≥ N2. Now if we take N ≥ max(N1, N2),
then we have

d(a, xN ) < ε; and d(b, xN ) < ε.

Hence we have
d(a, b) ≤ d(a, xN ) + d(xN , b) < 2ε < d(a, b).

It leads to a contradiction. 2

Example 2.3 :

(i) If we let (R, d) be the usual metric space and let xn = 1/n, then (xn) is a convergent
sequence in R.

(ii) If we let X = (0, 1] and d is the metric induced by the usual metric on R, then the
sequence (1/n) is divergent in (0, 1]. In fact, if (1/n) converges to an element a ∈ (0, 1],
then lim 1/n = a in R. Then by the uniqueness of limit (see Proposition 2.2), we have
a = 0. It leads to a contradiction.

Definition 2.4 Let A be a subset of X. A point a ∈ X is said to be a limit point of A if for
any r > 0, we have

(B(a, r) \ {a}) ∩A 6= ∅

i.e., for any r > 0, there is an element z ∈ A such that 0 < d(a, z) < r (note: z 6= a because
d(a, z) > 0).
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Put D(A) the set of all limit points of A and A = A∪D(A). Also the set A is called the closure
of A.

Proposition 2.5 Using the notation above, let z ∈ X. Then the following are equivalent.

(i) z ∈ A.

(ii) B(z, r) ∩A 6= ∅ for all r > 0.

(iii) There is a sequence (xn) ∈ A such that limxn = z.

Moreover, if A and B are any subsets of X, then we have

(a) ∅ = ∅.

(b) A = A.

(c) A ∪B = A ∪B.

Remark 2.6 (i) In general, A ∩B 6= A ∩B.
For example, if we consider X = R and A = (0, 1);B = (1, 2), then A ∩ B = ∅ and
A = [0, 1], B = [1, 2]. So, we have ∅ = A ∩B ( A ∩B = {1}.

(ii) Let A1, A2, .... be an infinite sequence of subsets of X. In general,
⋃∞
n=1An 6=

⋃∞
n=1An.

For example, let X = R and An = [0, 1− 1
n). Then

⋃∞
n=1An = [0, 1] but

⋃∞
n=1An = [0, 1).

Example 2.7 (i) Let X = R and A = Z. Then D(Z) = ∅ and A = Z .

(ii) Let X = R and A = (0, 1]. Then D(A) = [0, 1] and A = [0, 1].

(iii) Let X = (0,∞) and A = (0, 1]. Then D(A) = (0, 1] and A = (0, 1].

(iv) Let X = R and A = Q. Then D(A) = R and Q = R (A is said to be dense in X if
A = X).

(v) Using the notation as in Example 1.6, we let

c00 = {(xn) ∈ `∞ : there are only finitely many xn
′s 6= 0}.

Also c00 is endowed with the ‖ · ‖∞.
Then the set c00 is dense in c0. In fact, if v = (vn) ∈ c0, then for any ε > 0, there is
N ∈ N such that |vn| < ε for all n ≥ N . Now we define ξ = (ξn) by ξn = vn when
1 ≤ n ≤ N − 1 and ξn = 0 when n ≥ N . Then ξ ∈ c00 and ‖v − ξ‖∞ = supn≥N |vn| < ε.
So v ∈ c00.

Definition 2.8 A subset A of X is said to be closed in X if A = A(⇔ D(A) ⊆ A).

Proposition 2.9 A subset A of X is closed if and only if for an element a ∈ X having a
sequence (xn) in A with limxn = a, implies a ∈ A.
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Example 2.10 (i) Let X = R. Then Z is a closed subset on R and (0, 1] is ”Not” a closed
subset of R. However, if X = (0,∞), then (0, 1] is a closed subset of (0,∞).

So, the notion of ”Closeness” depends on the choice of X.

(ii) Using the notation as in Examples 1.2 and 2.3, c0 is a closed subspace of `∞ and c00 is
not a closed subspace of `∞.
Claim : c0 is closed in `∞.
By Proposition 2.9, we need to show that if v ∈ `∞ with a sequence (ξn) in c0 such that
limn ‖ξn − v‖∞ = 0, then v ∈ c0.
Now put v = (vj)

∞
j=1 and ξn = (ξn,j)

∞
j=1. Let ε > 0. Since limn ‖ξn − v‖∞ = 0, there is

a positive integer N such that ‖v − ξN‖∞ < ε. This implies that |vj − ξN,j | < ε for all
j ∈ N. On the other hand, there is a positive integer J such that |ξN,j | < ε for all j ≥ J
because ξN ∈ c0. So, we have

|vj | < |ξN,j |+ ε < 2ε

for all j ≥ J . Therefore, v ∈ c0. The proof is finished.

Proposition 2.11 Using the notation as before, we have the following assertions.

(i) The whole set X and the empty set ∅ both are closed subsets of X.

(ii) If A and B are the closed subsets of X, then so is A ∪B.

(iii) If (Ai)i∈I is a family of closed subsets of X, then so is the intersection
⋂
i∈I Ai.

(iv) The closure A of A is the smallest closed set containing A, that is, A is closed and if F
is another closed set with A ⊆ F , then A ⊆ F .

Remark 2.12 The assumption of the finite union of closed sets in Proposition 2.11 (ii) is
essential. For example, consider X = R and

⋃∞
n=2[1/n, 1] = (0, 1].

Exercise 2.13 Let A be a non-empty subset of X. A point a ∈ X is called a boundary point
of A if B(a, r) ∩ A 6= ∅ and B(a, r) ∩ Ac 6= ∅ for all r > 0, where Ac denotes the complement
of A in X. The set of all boundary points, write ∂A, of A is called the boundary of A.

(i) Find the boundaries of Z and Q in R.

(ii) Let X = (0, 1) ∪ (2, 3). Find the boundary of the set (0, 1) in X.

(iii) Show that the boundary ∂A is a closed subset of X.

(iv) Show that A = A ∪ ∂A.

Definition 2.14 A subset V of X is said to be open in X if for each z ∈ V , there is r > 0
such that B(z, r) ⊆ V .
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Remark 2.15 (i) The notion of open sets depends on the choice of X in which the sets are
sitting. For example (0, 1] is not open in R but it is open in the set (0, 1] ∪ [2, 3].

(ii) A subset V of X can be an open and closed subset of X. For example, (0, 1] is open and
closed subset of (0, 1] ∪ [2, 3].

(iii) A subset V can be neither closed nor open in X. For example, (0, 1] is neither closed nor
open in R.

Proposition 2.16 We have the following assertions.

(i) A subset V is open in X if and only if X \ V is closed in X.

(ii) The empty set ∅ and the whole set X both are open.

(iii) If {Vi}i∈I is a family of open subsets of X, then the union
⋃
i∈I Vi is open in X.

(iv) For any finitely many V1, ..., VN open subsets of X, we have V1 ∩ · · · ∩ VN is open in X.
For example, (0, 1] is neither closed nor open in R.

Exercise 2.17 (i) Let V be a subset of X. A point z ∈ V is said to be an interior point of
V if there is r > 0 such that B(z, r) ⊆ V . If we put int(V ) the set of all interior points
of V , show that int(V ) is an open subset of X.

(ii) A metric d on X is said to be non-archimedean if it satisfies the strong triangle inequality,
that is, d(x, y) ≤ max(d(x, z), d(z, y)) for all x, y and z ∈ X (see also Example 1.2
(iv)). Show that if d is a non-archimedean metric on X, then for every closed ball
B(a, r) := {x ∈ X : d(a, x) ≤ r} is an open set in X.

3 Sequentially Compact Metric Spaces

Throughout this section, (X, d) always denotes a metric space. Let (xn) be a sequence in X.
Recall that a subsequence (xnk

)∞k=1 of (xn) means that (nk)
∞
k=1 is a sequence of positive integers

satisfying n1 < n2 < · · · < nk < nk+1 < · · · , that is, such sequence (nk) can be viewed as a
strictly increasing function n : k ∈ {1, 2, ..} 7→ nk ∈ {1, 2, ...}.
In this case, note that for each positive integer N , there is K ∈ N such that nK ≥ N and thus
we have nk ≥ N for all k ≥ K.

Proposition 3.1 Let (xn) be a sequence in X. Then the following statements are equivalent.

(i) (xn) is convergent.

(ii) Any subsequence (xnk
) of (xn) converges to the same limit.

(iii) Any subsequence (xnk
) of (xn) is convergent.

Proof: Part (ii)⇒(i) is clear because the sequence (xn) is also a subsequence of itself.
For the Part (i)⇒ (ii), assume that limxn = a ∈ X exists. Let (xnk

) be a subsequence of (xn).
We claim that limxnk

= a. Let ε > 0. In fact, since limxn = a, there is a positive integer N
such that d(a, xn) < ε for all n ≥ N . Notice that by the definition of a subsequence, there is a
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positive integer K such that nk ≥ N for all k ≥ K. So, we see that d(a, xnk
) < ε for all k ≥ K.

Thus we have limk→∞ xnk
= a.

Part (ii)⇒ (iii) is clear.
It remains to show Part (iii) ⇒ (ii). Suppose that there are two subsequences (xni)

∞
i=1 and

(xmi)
∞
i=1 converge to distinct limits. Now put k1 := n1. Choose mi′ such that n1 < mi′ and

then put k2 := mi′ . Then we choose ni such that k2 < ni and put k3 for such ni. To repeat
the same step, we can get a subsequence (xki)

∞
i=1 of (xn) such that xk2i = xni′ for some ni′

and xk2i−1
= xmj′ for some mj′ . Since by the assumption limi xni 6= limi xmi , limi xki does not

exist which leads to a contradiction.
The proof is finished. 2

We now recall the following important theorem in R (see [1, Theorem 3.4.8]).

Theorem 3.2 Bolzano- Weierstrass Theorem Every bounded sequence in R has a conver-
gent subsequence.

Definition 3.3 X is said to be sequentially compact if for every sequence inX has a convergent
subsequence.
In particular, a subset A of X is sequentially compact if every sequence has a convergent
subsequence with the limit in A.

Example 3.4 (i) Every closed and bounded interval is sequentially compact.
In fact, if (xn) is any sequence in a closed and bounded interval [a, b], then (xn) is bounded.
Then by Bolzano-Weierstrass Theorem (see [1, Theorem 3.4.8]), (xn) has a convergent
subsequence (xnk

). Notice that since a ≤ xnk
≤ b for all k, then a ≤ limk xnk

≤ b, and
thus limk xnk

∈ [a, b]. Therefore A is sequentially compact.

(ii) (0, 1] is not sequentially compact. In fact, if we consider xn = 1/n, then (xn) is a sequence
in (0, 1] but it has no convergent subsequence with the limit sitting in (0, 1].

Proposition 3.5 If A is a sequentially compact subset of X, then A must be a closed and
bounded subset of X.

Proof: We first claim that A is bounded. Suppose not. We suppose that A is unbounded. If we
fix an element x1 ∈ A, then there is x2 ∈ A such that d(x1, x2) > 1. Using the unboundedness
of A, we can find an element x3 in A such that d(x3, xk) > 1 for k = 1, 2. To repeat the same
step, we can find a sequence (xn) in A such that d(xn, xm) > 1 for n 6= m. Thus A has no
convergent subsequence. Thus A must be bounded
Finally, we show that A is closed in X. Let (xn) be a sequence in A and it is convergent. It needs
to show that limn xn ∈ A. Note that since A is compact, (xn) has a convergent subsequence
(xnk

) such that limk xnk
∈ A. Then by Proposition 3.1, we see that limn xn = limk xnk

∈ A.
The proof is finished. 2

Corollary 3.6 Let A be a subset of R. Then A is sequentially compact if and only if A is a
closed and bounded subset.

Proof: The necessary part follows from Proposition 3.5 at once.
Now suppose that A is closed and bounded. Let (xn) be a sequence in A and thus (xn) is a
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bounded sequence in R. Then by the Bolzano- Weierstrass Theorem, (xn) has a subsequence
(xnk

) which is convergent in R. Since A is closed, limk xnk
∈ A. Therefore, A is sequentially

compact. 2

Remark 3.7 From Corollary 3.6, we see that the converse of Proposition 3.5 holds when
X = R, but it does not hold in general. For example, if X = `∞(N) and A is the closed unit
ball in `∞(N), that is A := {x ∈ `∞(N) : ‖x‖∞ ≤ 1}, then A is closed and bounded subset of
`∞(N) but it is not sequentially compact. Indeed, if we put en := (en,i)

∞
i=1 ∈ `∞(N), where

en,i = 1 as i = n; otherwise, en,i = 0. Then (en) is a sequence in A but it has no convergent
subsequence because ‖en − em‖∞ = 2 for n 6= m.

Definition 3.8 X is said to be compact if for any open cover {Jα}α∈Λ of X, that is, each Jα
is an open set and

X =
⋃
α∈Λ

Jα,

we can find finitely many Jα1 , .., JαN such that X = Jα1 ∪ · · · ∪ JαN .

Remark 3.9 Notice that since for each open set V in R and for each element x ∈ V , we can
find rx > 0 such that Jx := (x − rx, x + rx) ⊆ V . So, we have V =

⋃
x∈V Jx. Hence, in the

Definition 3.8, those open sets Jα’s can be replaced by open intervals.

Example 3.10 (0, 1] is not compact. In fact, if we put Jn = (1/n, 2) for n = 2, 3..., then
(0, 1] ⊆

⋃∞
n=2 Jn, but we cannot find finitely many Jn1 , ..., JnK such that (0, 1] ⊆ Jn1∪· · ·∪JnK .

So (0, 1] is not compact.

Proposition 3.11 If X is compact, then it is sequentially compact.

Proof: Suppose that X is compact but it is not sequentially compact. Then there is a sequence
(xn) in X such that (xn) has no subsequent. Put F = {xn : n = 1, 2, ...}. Then F is infinite
and hence for each element a ∈ X, there is δa > 0 such that B(a, δa) ∩ F is finite. Indeed,
if there is an element a ∈ X such that B(a, δ) ∩ F is infinite for all δ > 0, then (xn) has a
convergent subsequence with the limit a. Let Ja := B(a, δa). On the other hand, we have
X =

⋃
a∈X Ja. Then by the compactness of X, we can find finitely many a1, ..., aN such that

X = Ja1 ∪ · · · ∪ JaN . In particular, we have F ⊆ Ja1 ∪ · · · ∪ JaN . Then by the choice of Ja’s, F
must be finite. This leads to a contradiction. Therefore, X is sequentially compact.
2

Remark 3.12 Indeed, we see that Proposition 3.11 holds for a general topological space from
the proof above. The following Theorem 3.13 is an important feature of a metric space. We
will show the case when X = R in the next section. The complete proof for the general metric
spaces case is given in Section 5.

Theorem 3.13 Let X be a metric space. Then X is sequentially compact if and only if it is
compact.

Proof: See Theorem 5.11 below (see also [2, Section 9.5, Theorem 16]). 2

8



4 Sequentially Compact Sets and Compact Sets in R

The following Lemma can be directly shown by the definition, so, the proof is omitted here.

Lemma 4.1 Let A be a subset of R. The following statements are equivalent.

(i) A is closed.

(ii) For each element x ∈ R \A, there is δx > 0 such that (x− δx, x+ δx) ∩A = ∅.

(iii) If (xn) is a sequence in A and limxn exists, then limxn ∈ A.

Before going to show Theorem 3.13 for the case of R, let us first recall one of the important
properties of real line.

Theorem 4.2 Nested Intervals Theorem Let (In := [an, bn]) be a sequence of closed and
bounded intervals. Suppose that it satisfies the following conditions.

(i) : I1 ⊇ I2 ⊇ I3 ⊇ · · · .

(ii) : limn(bn − an) = 0.

Then there is a unique real number ξ such that
⋂∞
n=1 In = {ξ}.

Proof: See [1, Theorem 2.5.2, Theorem 2.5.3]. 2

Theorem 4.3 (Heine-Borel Theorem) Every closed and bounded interval [a, b] is a compact
set.

Proof: Suppose that [a, b] is not compact. Then there is an open intervals cover {Jα}α∈Λ of
[a, b] but it it has no finite sub-cover. Let I1 := [a1, b1] = [a, b] and m1 the mid-point of [a1, b1].
Then by the assumption, [a1,m1] or [m1, b1] cannot be covered by finitely many Jα’s. We may
assume that [a1,m1] cannot be covered by finitely many Jα’s. Put I2 := [a2, b2] = [a1,m1]. To
repeat the same steps, we can obtain a sequence of closed and bounded intervals In = [an, bn]
with the following properties:

(a) I1 ⊇ I2 ⊇ I3 ⊇ · · · · · · ;

(b) limn(bn − an) = 0;

(c) each In cannot be covered by finitely many Jα’s.

Then by the Nested Intervals Theorem, there is an element ξ ∈
⋂
n In such that limn an =

limn bn = ξ. In particular, we have a = a1 ≤ ξ ≤ b1 = b. So, there is α0 ∈ Λ such that ξ ∈ Jα0 .
Since Jα0 is open, there is ε > 0 such that (ξ − ε, ξ + ε) ⊆ Jα0 . On the other hand, there is
N ∈ N such that aN and bN in (ξ − ε, ξ + ε) because limn an = limn bn = ξ. Thus we have
IN = [aN , bN ] ⊆ (ξ − ε, ξ + ε) ⊆ Jα0 . It contradicts to the Property (c) above. The proof is
finished. 2

Theorem 4.4 Let A be a subset of R. The following statements are equivalent.
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(i) A is compact.

(ii) A is sequentially compact.

(iii) A is closed and bounded.

Proof: The result is shown by the following path (i)⇒ (ii)⇒ (iii)⇒ (i).
Part (i)⇒ (ii) can be obtained by Proposition 3.11 immediately.
Part (ii)⇒ (iii) follows from Proposition 3.5 at once.
It remains to show (iii)⇒ (i). Suppose that A is closed and bounded. Then we can find a closed
and bounded interval [a, b] such that A ⊆ [a, b]. Now let {Jα}α∈Λ be an open intervals cover of
A. Notice that for each element x ∈ [a, b] \A, there is δx > 0 such that (x− δx, x+ δx)∩A = ∅
since A is closed. If we put Ix = (x− δx, x+ δx) for x ∈ [a, b] \A, then we have

[a, b] ⊆
⋃
α∈Λ

Jα ∪
⋃

x∈[a,b]\A

Ix.

Using the Heine-Borel Theorem 4.3, we can find finitely many Jα’s and Ix’s, say Jα1 , ..., JαN

and Ix1 , ..., IxK , such that A ⊆ [a, b] ⊆ Jα1 ∪ · · · ∪ JαN ∪ Ix1 ∪ · · · ∪ IxK . Note that Ix ∩ A = ∅
for each x ∈ [a, b] \ A by the choice of Ix. Therefore, we have A ⊆ Jα1 ∪ · · · ∪ JαN and hence
A is compact.
The proof is finished. 2

5 Complete Metric Spaces

Let (X, d) be a metric space as before.

Definition 5.1 A sequence (xn) in X is called a Cauchy sequence if for any ε > 0, there is a
positive integer N such that d(xm, xn) < ε for all m,n ≥ N .

Example 5.2 Let en ∈ `∞(N) be defined as in Remark 3.7. Then (en) is not a Cauchy
sequence.

Proposition 5.3 Every convergent sequence is a Cauchy sequence.

Proof: Let (xn) be a convergent sequence in X. Suppose that limn xn = v ∈ X. Then for any
ε > 0, there is N ∈ N such that d(v, xn) < ε for all n ≥ N . Thus for any m,n ≥ N , we see
that d(xm, xn) ≤ d(xm, v) + d(v, xn) < 2ε. Thus (xn) is a Cauchy sequence. 2

Remark 5.4 The converse of Proposition 5.3 does not hold in general. For example, if we
consider X = (0, 1] and xn = 1/n, then (xn) is a Cauchy sequence but it is not convergent in
(0, 1].

The following definition is one of important concepts in mathematics world.

Definition 5.5 X is said to be complete if every Cauchy sequence in X is convergent.

10



The following result is a very important motivation of the definition of completeness.

Theorem 5.6 R is complete.

Proof: Let (xn) be a Cauchy sequence in R. We first claim that (xn) must be bounded. Indeed,
by the definition of a Cauchy sequence, if we consider ε = 1, then there is a positive integer N
such that |xm − xN | < 1 for all m ≥ N and thus we have |xm| < 1 + |xN | for all m ≥ N . So,
if we let M = max(|x1|, ..., |xN−1|, |xN | + 1), then we have |xn| ≤ M for all n. Hence (xn) is
bounded.
So, we can now apply the Bolzano-Weierstrass Theorem, (xn) has a convergent subsequence
(xnk

). Let L := limk xnk
. We are going to show that L = limn xn.

Let ε > 0. Since (xn) is Cauchy, there is N ∈ N such that |xm − xn| < ε for all m,n ≥ N .
On the other hand, since limk xnk

= L, we can find a positive integer K so that |L− xnk
| < ε

for all k ≥ K. Now if we choose r ≥ K such that nr ≥ N , then for any n ≥ N , we have
|xn − L| ≤ |xn − xnr |+ |xnr − L| < 2ε. Thus (xn) is convergent with limn xn = L.
The proof is finished. 2

Example 5.7 (i) `∞(N) := {(xi)∞i=1 : supi |xi| <∞} is complete under the sup norm ‖ · ‖∞.
In fact, notice that if (xn) is Cauchy sequence in `∞ and if we let xn = (xn,i)

∞
i=1, then for

each i = 1, 2..., (xn,i)
∞
n=1 is a Cauchy sequence in R. Thus limn xn,i exists in R for each

i. Write ξi := limn xn,i ∈ R and ξ := (ξi). We are now going to show that ξ ∈ `∞ and
limn ‖ξ − xn‖∞ = 0.
Notice that since (xn) is a Cauchy sequence in `∞, so, for each ε > 0, there is N ∈ N
such that ‖xn − xm‖∞ < ε for all m,n ≥ N and hence we have

|xn,i − xm,i| ≤ sup
k
|xn,k − xm,k| = ‖xn − xm‖∞ < ε

for all m,n ≥ N and for all i = 1, 2.... So if we fix i and m ≥ N and taking n → ∞,
then we have |ξi−xm,i| < ε and hence ‖ξ−xm‖∞ < ε for m ≥ N . From this we see that
limm ‖ξ − xm‖∞ = 0 and thus ξ ∈ `∞ because `∞ is a vector space.

(ii) c0(N) is complete under the sup-norm. In fact every closed subset of a compete metric
space must be complete (why?). Since c0 is closed in `∞, c0 is complete.

(iii) `p(N) for 1 ≤ p <∞ all are complete metric spaces under the `p-norm.

(iv) C[a, b] := {f : [a, b]→ R : f is continuous} is complete under the sup-norm.

Proposition 5.8 Let (Fn) be a sequence of closed and bounded non-empty subsets of a complete
metric space X. For each n, put diam(Fn) := sup{d(x, y) : x, y ∈ Fn} (the diameter of Fn).
Suppose that it satisfies the following conditions.

(a) F1 ⊇ F2 ⊇ F3 · · · · · · .

(b) limn diam(Fn) = 0.

If X is complete, then there is a unique element ξ ∈ X such that
⋂
n Fn = {ξ}.
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Proof: For each Fn, we take an element xn in Fn. Then by the condition of (a) and (b) above,
(xn) forms a Cauchy sequence in X. Since X is complete, ξ := limxn exists in X. Note that
ξ ∈ Fn for all n because each Fn is closed and Fm ⊇ Fm+1 ⊇ · · · for all m. So, ξ ∈

⋂
n Fn.

On the other hand, the condition (b) implies that the intersection
⋂
n Fn contains at most one

element. The proof is finished. 2

Remark 5.9 The assumption of completeness of X in Proposition 5.8 is essential. For exam-
ple, if we consider X = (0, 1] and Fn = (0, 1

n+1 ] for n = 1, 2..., then Fn’s satisfies the conditions
(a) and (b) above but

⋂
n Fn = ∅.

Definition 5.10 X is said to be totally bounded if for any r > 0, there exists finitely many
open balls of radius r, say B1, ..., BN such that X = B1 ∪ · · · ∪BN .

The following can be viewed as the generalization of the real case (see Theorem 5.6).

Theorem 5.11 The following statements are equivalent.

(i) X is compact.

(ii) X is sequentially compact.

(iii) X is complete and totally bounded.

Proof: Part (i)⇒ (ii) has been shown in Proposition 3.11.
For Part (ii)⇒ (iii), assume that X is sequentially compact. We first claim that X is complete.
Let (xn) be a Cauchy sequence in X. Notice that (xn) has a convergent subsequence (xnk

)
from the assumption. Let limk xnk

= v ∈ X. Using the same argument as in the proof of
Theorem 5.6, we see that v = limn xn and hence X is complete.
Secondly, we show that X is totally bounded. Suppose not. Then there is r > 0 such that
X cannot be covered by finitely many open balls of radius r. Fix x1 ∈ X. Then there is
x2 ∈ X with d(x2, x1) ≥ r. Similarly, we can find x3 ∈ X such that d(x3, xk) ≥ r for k = 1, 2
because the choice of r. To repeat the same argument, we have a sequence (xn) in X such
that d(xn, xm) ≥ r for all n 6= m. Therefore, (xn) has no convergent subsequence. It leads to
a contradiction and hence X must be totally bounded.
It remains to show (iii)⇒ (i). Assume that X is complete and totally bounded.
Suppose that X is not compact. Then there is open cover of X, says J := {Ji}i∈I , which has
no finite subcover of X.
SinceX is totally bounded by the assumption, then there are finitely many open balls B1, ..., Bm
and each ball has radius 1 such that X = B1 ∪ · · · ∪Bm. Since J has no finite subcover, there
must exist some Bk which cannot be covered by finitely Ji’s. Let B1 be such open ball. Put
F1 := B1 and hence F1 also cannot be covered by finitely many Ji’s. Using totally boundedness
of X again, we can find finitely many open balls D1, ..., Dl and each has radius 1/2 such that
F1 ⊆ D1∪· · ·∪Dl and Di∩F1 6= ∅ for all i = 1, .., l. Since F1 cannot be covered by finitely many
Ji’s, there must exist some Dj such that F1∩Dj shares the same property. Put F2 := F1 ∩Dj .
To repeat the same step, we can get a sequence of closed and bounded subsets (Fn) of X which
has the following properties.
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(a) F1 ⊇ F2 ⊇ F3 ⊇ · · · · · · .

(b) diam(Fn)→ 0 as n→∞.

(c) Each Fn cannot be covered by finitely many Ji’s.

By using Proposition 5.8, we have
⋂
n Fn = {ξ} for some element ξ ∈ X. On the other hand,

we have ξ ∈ Ji0 for some Ji0 ∈ J . Since Ji0 is open, there is r > 0 such that B(ξ, r) ⊆ Ji0 .
It is because limn diam(Fn) = 0, we can find FN such that diam(FN ) < r. Since ξ ∈ FN , we
have FN ⊆ B(ξ, r) ⊆ Ji0 which contradicts to the property (c) above.
The proof is finished. 2

Exercise 5.12 Let A be a subset of X.

(i) Show that if X is complete, then A is complete if and only if A is closed in X.

(ii) Show that if A is complete, then A is closed in X.

6 Continuous mappings

Throughout this section, let (X, d) and (Y, ρ) be metric spaces.

Definition 6.1 Let f : X → Y be a function from X into Y . We say that f is continuous at
a point c ∈ X if for any ε > 0, there is δ > 0 such that ρ(f(x), f(c)) < ε whenever x ∈ X with
d(x, y) < δ.
Furthermore, f is said to be continuous on A if f is continuous at every point in X.

Remark 6.2 It is clear that f is continuous at c ∈ X if and only if for any ε > 0, there is
δ > 0 such that B(c, δ) ⊆ f−1(B(f(c), ε)).

Proposition 6.3 With the notation as above, we have

(i) f is continuous at some c ∈ X if and only if for any sequence (xn) ∈ X with limxn = c
implies lim f(xn) = f(c).

(ii) The following statements are equivalent.

(ii.a) f is continuous on X.

(ii.b) f−1(W ) := {x ∈ X : f(x) ∈W} is open in X for any open subset W of Y .

(ii.c) f−1(F ) := {x ∈ X : f(x) ∈ F} is closed in X for any closed subset F of Y .

Proof: Part (i):
Suppose that f is continuous at c. Let (xn) be a sequence in X with limxn = c. We claim that
lim f(xn) = f(c). In fact, let ε > 0, then there is δ > 0 such that ρ(f(x), f(c)) < ε whenever
x ∈ X with d(x, c) < δ. Since limxn = c, there is a positive integer N such that d(xn, c) < δ
for n ≥ N and hence ρ(f(xn), f(c)) < ε for all n ≥ N . Thus lim f(xn) = f(c).
For the converse, suppose that f is not continuous at c. Then we can find ε > 0 such that for
any n, there is xn ∈ X with d(xn, c) < 1/n but ρ(f(xn), f(c)) ≥ ε. So, if f is not continuous
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at c, then there is a sequence (xn) in X with limxn = c but (f(xn)) does not converge to f(c).
Part (iia)⇔ (iib):
Suppose that f is continuous on X. Let W be an open subset of Y and c ∈ f−1(W ). Since W
is open in Y and f(c) ∈ W , there is ε > 0 such that B(f(c), ε) ⊆ W . Since f is continuous at
c, there is δ > 0 such that B(c, δ) ⊆ f−1(B(f(c), ε)) ⊆ f−1(W ). So f−1(W ) is open in X.
It remains to show that the converse of Part (ii). Let c ∈ X. Let ε > 0. Put W := B(f(c), ε).
Then W is an open subset of Y and thus c ∈ f−1(W ) and f−1(W ) is open in X. Therefore,
there is δ > 0 such that B(c, δ) ⊆ f−1(W ). So, f is continuous at c.
Finally, the last equivalent assertion (ii.b) ⇔ (ii.c) is clearly from the fact that a subset of
a metric space is closed if and only if its complement is open in the given metric space (see
Proposition 2.16 (i)).
The proof is complete. 2

Corollary 6.4 Let f : X → Y and g : Y → Z be continuous maps between metric spaces.
Then the composition g ◦ f : X → Z is also continuous on X.

Proof: It is clear from Proposition 6.3 at once. 2

Definition 6.5 A bijection f : X → Y is said to be a homeomorphism if f and its inverse f−1

both are continuous. In this case, X is said to be homeomorphic to Y .

Proposition 6.6 If f : X → Y is a continuous map and X is compact, then the image f(X)
is also a compact subset of Y . Consequently, if f is a continuous bijection, then f must be a
homeomorphism, that is, the inverse map f−1 : Y → X is automatically continuous.

Proof: Let {Vi}i∈I be an open cover of f(X), that is, each Vi is an open subset of Y and
f(X) ⊆

⋃
i∈I Vi. Hence {f−1(Vi)}i∈I is also an open cover of X by Proposition 6.3. So by the

compactness of X, there are finitely many i1, .., iN ∈ I such that X = f−1(Vi1)∪· · ·∪f−1(ViN ).
This gives f(A) is covered by Vi1 , ..., , ViN . Thus f(A) is compact.
For showing the inverse f−1 : Y → X, by Proposition 6.3, it needs to show that f(F ) =
(f−1)−1(F ) is a closed subset of Y for every closed subset F of X. In fact, it is easy to see that
every closed subset of a compact metric space must be compact and every compact subset of
a metric space is also closed. Hence F is a compact subset of X and thus f(F ) is compact by
above. So f(F ) is a closed subset of Y as desired. The proof is finished. 2

Definition 6.7 We say that two metrics d1 and d2 on a set X are equivalent if there are
positive constants c, c′ such that c′d1(x, y) ≤ d2(x, y) ≤ cd1(x, y) for all x, y ∈ X.

Example 6.8 Let X = (0, 1) and d be the usual metric on X, that is d(x, y) := |x−y|. Define

a metric on X by ρ(x, y) := |x−y|
1+|x−y| for x, y ∈ (0, 1). Then the metrics d and ρ are equivalent

on (0, 1). In fact, one can directly check that we have ρ(x, y) ≤ d(x, y) ≤ 2ρ(x, y) for all
x, y ∈ (0, 1).

Proposition 6.9 Let d1 and d2 be the metrics on X. If d1 and d2 are equivalent, then the
identity map I : (X, d1)→ (X, d2) is a homeomorphism.

Proof: It clearly follows from Proposition 6.3. 2
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Remark 6.10 (i) The converse of Proposition 6.9 does not hold. For example, let X = R
and d the usual metric. Let ρ be given as in Proposition 6.9. Then for a sequence (xn)
and an element x in R, we see that d(xn, x) → 0 if and only if ρ(xn, x) → 0. So, the
identity I : (X, d) → (X, ρ) is a homeomorphism. However, if X = R, then the usual
metric d is not equivalent to the metric ρ defined above. In fact, although we always
have ρ(x, y) ≤ d(x, y) for all x, y ∈ R, it is impossible to find a positive constant c such
that d(x, y) ≤ cρ(x, y) for all x, y ∈ R. Notice that if there is such c, then we have
|x− y| = d(x, y) ≤ c− 1 for all x 6= y in R. It is absurd.

(ii) The completeness of metric spaces are not preserved under homeomorphisms.
For example, consider X = R. Let d1(x, y) := |x− y| and d2(x, y) := |e−x − e−y| for x, y
in R. Then the identity map I : (X, d1) → (X, d2) is a homeomorphism (check)! and
(X, d1) is complete. However, (X, d2) is not complete. In fact, if we let xn = n for
n = 1, 2..., then (xn) is Cauchy but not convergent in R with respect to the metric d2.

Definition 6.11 A mapping f : (X, d) → (Y, ρ) is called a contraction if there is 0 < r < 1
such that ρ(f(x), f(x′)) ≤ rd(x, x′) for all x, x′ ∈ X.

Remark 6.12 It is clear that every contraction must be continuous.

Example 6.13 (i) Define f : (1,∞) → (1,∞) by f(x) :=
√
x. Then f is a contraction

since we always have |f(x) − f(y)| ≤ 1
2 |x − y| for all x, y ∈ (1,∞). Indeed, for any

x, y ∈ (1,∞) with x < y, then by the Mean Value Theorem, there is c ∈ [x, y] such that
f(x)− f(y) = f ′(c)(x− y). Notice that f ′(c) = 1

2
√
c
≤ 1

2 .

Proposition 6.14 Let (X, d) be a complete metric space. If f : X → X is a contraction, then
there is a fixed point for f , that is, there is c ∈ X such that f(c) = c.

Proof: Let 0 < r < 1 be a contraction ratio for f , that is, d(f(x), f(y) ≤ rd(x, y) for all
x, y ∈ X. Fix x1 ∈ X. Put xn+1 = f(xn), for n = 1, 2, ....
We first claim that (xn) is a Cauchy sequence in X. In fact, notice that we have d(xn+2, xn+1) =
d(f(xn+1), f(xn)) ≤ rd(xn+1, xn) for all n = 1, 2.... So, we have

d(xn+1, xn) ≤ rn−1d(x2, x1)

for all n = 1, 2.... From this, we have

d(xn+p, xn) ≤
∑

n≤k≤n+p−1

d(xk+1, xk) ≤
∑

n≤k≤n+p−1

rkd(x2, x1) (6.1)

for any n, p = 1, 2.... On the other hand, since 0 < r < 1, we have
∑∞

k=1 r
k < ∞ and hence,

for any ε > 0, there is a positive integer N such that
∑∞

k=n r
k < ε for all n ≥ N . So, by the

Eq 6.1 above, we see that (xn) is a Cauchy sequence in X. This implies that limxn = c exists
in X because X is complete. Since f is continuous and xn+1 = f(xn), the result follows from

c = limxn+1 = lim f(xn) = f(c).

The proof is finished. 2
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Remark 6.15 The Proposition 6.14 does not hold if f is not a contraction. For example, if
we consider f(x) = x− 1 for x ∈ R, then it is clear that |f(x)− f(y)| = |x− y| and f has no
fixed point in R.

Exercise 6.16 A function g : (X, d)→ (Y, ρ) is called a Lipschitz function if there is a C > 0
such that ρ(g(x), g(x′)) ≤ Cd(x, x′) for all x, x′ ∈ X. Now let A ⊆ X be a non-empty subset
and assume that f : A→ Y is a Lipschitz function.

(i) Show that f is continuous on A.

(ii) Show that if (xn) is a Cauchy sequence in A, then f(xn) is a Cauchy sequence in Y .

(iii) Show that if Y is complete, then there is a unique continuous mapping F : A→ Y such
that F (x) = f(x) for all x ∈ A.

Answer:
Part (i) and (ii) are clearly shown by the definition of Lipschitz functions.
The proof of Part (iii) is divided by the following several claims.
Claim 1. If (xn) is a sequence in A and limxn exists, then lim f(xn) exists.
Claim 2. If (xn) and (yn) both are convergent sequences in A and limxn = lim yn, then
lim f(xn) = lim f(yn).
By Claim 1, L := lim f(xn) and L′ = lim f(yn) both exist in Y . For any ε > 0, let δ > 0 be
found as in Claim 1. Since limxn = lim yn, there is N ∈ N such that d(xn, yn) < δ for all
n ≥ N and hence, we have ρ(f(xn), f(yn)) < ε for all n ≥ N . Taking n → ∞, we see that
ρ(L,L′) ≤ ε for all ε > 0. So L = L′. Claim 2 follows.
Recall that an element x ∈ A if and only if there is a sequence (xn) in A converging to x.
Now for each x ∈ A, we define

F (x) := lim f(xn)

if (xn) is a sequence in A with limxn = x. It follows from Claim 1 and Claim 2 that F is a
well defined function defined on A and F (x) = f(x) for all x ∈ A.
So, it remains to show that F is continuous. Then F is a continuous extension of f to A as
desired.
Now suppose that F is not continuous at some point z ∈ A. Then there is ε > 0 such that for
any δ > 0, there is x ∈ A satisfying d(x, z) < δ but ρ(F (x), F (z)) ≥ ε. Notice that for any δ > 0
and if d(x, z) < δ for some x ∈ A, then we can choose a sequence (xi) in A such that limxi = x.
Therefore, we have d(xi, z) < δ and ρ(f(xi), F (z)) ≥ ε/2 for any i large enough. Therefore,
for any δ > 0, we can find an element x ∈ A with d(x, z) < δ but ρ(f(x), F (z)) ≥ ε/2. Now
consider δ = 1/n for n = 1, 2.... This yields a sequence (xn) in A which converges to z but
ρ(f(xn), F (z)) ≥ ε/2 for all n. However, we have lim f(xn) = F (z) by the definition of F which
leads to a contradiction. Thus F is continuous on A.
Finally the uniqueness of such continuous extension is clear.
The proof is finished.

Remark 6.17 In general, the continuous extension of a continuous function may not exist.
For example, let X = Y = R and A = (0, 1]. If we consider f(x) = 1/x for x ∈ A, then f
does not have continuous extension to A = [0, 1]. In fact, if such continuous extension F exists
on [0, 1], then F must be bounded on [0, 1], in particular, it is bounded on (0, 1] and hence,
F (x) = f(x) = 1/x is bounded on (0, 1]. It leads to a contradiction.
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Definition 6.18 A mapping f : (X, d)→ (Y, ρ) is said to be uniformly continuous on X if for
any ε > 0, there is δ > 0, such that ρ(f(x), f(x′)) < ε, whenever, d(x, x′) < δ.

Proposition 6.19 If f : (X, d)→ (Y, ρ) is continuous and X is compact, then f is uniformly
continuous on X.

Proof: Compactness argument:
Let ε > 0. Since f is continuous on A, then for each x ∈ X, there is δx > 0, such that
ρ(f(y), f(x)) < ε whenever y ∈ X with d(x, y) < δx. Now for each x ∈ X, set Jx = B(x, δx2 ).
Then X ⊆

⋃
x∈X Jx. By the compactness of X, there are finitely many x1, ..., xN ∈ X such that

X = Jx1 ∪ · · · ∪ JxN . Now take 0 < δ < min(
δx1
2 , ...,

δxN
2 ). Now for x, y ∈ X with d(x, y) < δ,

then x ∈ Jxk for some k = 1, .., N , from this it follows that d(x, xk) <
δxk
2 and d(y, xk) ≤

d(y, x) + d(x, xk) ≤
δxk
2 +

δxk
2 = δxk . So for the choice of δxk , we have ρ(f(y), f(xk)) < ε

and ρ(f(x), f(xk)) < ε. Thus we have shown that ρ(f(x), f(y)) < 2ε whenever x, y ∈ X with
d(x, y) < δ. The proof is finished.
Sequentially compactness argument:
Suppose that f is not uniformly continuous on X. Then there is ε > 0 such that for each
n = 1, 2, .., we can find xn and yn in X with d(xn, yn) < 1/n but ρ(f(xn), f(yn)) ≥ ε. Notice
that by the sequentially compactness of X, (xn) has a convergent subsequence (xnk

) with
a := limk xnk

∈ X. Now applying sequentially compactness of X for the sequence (ynk
), then

(ynk
) contains a convergent subsequence (ynkj

) such that b := limj ynkj
∈ X. On the other

hand, we also have limj xnkj
= a. Since d(xnkj

, ynkj
) < 1/nkj for all j, we see that a = b. This

implies that limj f(xnkj
) = f(a) = f(b) = limj f(ynkj

). This leads to a contradiction since we

always have ρ(f(xnkj
), f(ynkj

)) ≥ ε > 0 for all j by the choice of xn and yn above. The proof

is finished. 2

Proposition 6.20 Assume that X and Y are complete. Let A be a subset of X and f : A→ Y
a continuous function. If A is totally bounded, then the following statements are equivalent.

(i): f is uniformly continuous on A.

(ii): There is a unique continuous function F defined on the closure A such that F (x) = f(x)
for all x ∈ A.

Proof: For the Part (ii) ⇒ (i), we first notice that A is also totally bounded while A is
totally bounded. Indeed, for any r > 0, we can find finitely many element x1, .., xN in A
such that A ⊆ B(x1, r/2) ∪ · · · ∪ B(xN , r/2). Now for any z ∈ A, we have B(z, r/2) ∩ A 6= ∅
and hence, B(z, r/2) ∩ B(xk, r/2) 6= ∅ for some k. It implies that z ∈ B(xk, r). So, A ⊆
B(x1, r) ∪ · · · ∪ B(xN , r). Therefore, A is totally bounded too. Then by Theorem 5.11, A is
compact since X is complete. Thus, the implication (ii) ⇒ (i) follows from Proposition 6.19
at once.
The proof of Part (i)⇒ (ii) is exactly the same in Exercise 6.16. Assume that f is uniformly
continuous on A.
We first notice that if (xn) is a sequence in A and limxn exists, then lim f(xn) exists.
It needs to show that (f(xn)) is a Cauchy sequence because Y is complete. Indeed, let ε > 0.
Then by the uniform continuity of f on A, there is δ > 0 such that ρ(f(x), f(y)) < ε whenever
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x, y ∈ A with d(x, y) < δ. Notice that (xn) is a Cauchy sequence since it is convergent. Thus,
there is a positive integer N such that d(xm, xn) < δ for all m,n ≥ N . This implies that
ρ(f(xm), f(xn)) < ε for all m,n ≥ N and hence, lim f(xn) exists in Y .
Then the rest of the proof follows from Exercise 6.16 at once. 2

References

[1] R.G. Bartle and I.D. Sherbert, Introduction to Real Analysis, (4th ed), Wiley, (2011).

[2] H. Royden and P. Fitzpatrick, Real Analysis, (4th ed), Pearson, (2010).

18


